Category Archives: technology

curved displays are the future

samsungevent

Yesterday I spoke an an event to launch Samsung’s latest curved screen displays. The technology is really gorgeous and everyone who attended was wanting one of the new displays after seeing them.

I am convinced that curved screens will become ever more popular in the future because not only do they look good but they offer serious advantages for users who undertake intensive tasks – the sort of tasks that need a large desktop display rather than a mobile device. When it comes to desktop displays it is really quite simple – bigger is better.

Many people – and I am one of them – are what is known as ‘double screeners’. I have two screens attached to my desktop and my operating system is spread seamlessly across them because I wanted more screen space to work in. I recently carried out a survey – you can find more details here – which showed that 38% of British office workers are already using two or more screens attached to their desktop computers.

Of course, in an ideal world one very large screen would be better than two smaller screens. But there is a problem with most flat-screen technology which is that the LED/LCD pixels emit light straight out but emit a lot less light at an angle to the screen. This means that you look at a large flat screen the light reaching your eye from the edges of the screen is a lot less. Not only that but, because you are looking at the screen at an angle, text and other fine details can be distorted at the edge. Curved displays get around this problem and I am hoping to replace my two flat screens soon with a single Samsung curved display.

With a curved display the distance from the eye to the screen is the same across the whole display and the angle of view is also constant. Not only does this solve the colour and acuity problems I just mentioned but it means that users need to need fewer eye and neck movements. Given that many of us spending longer using a display than we do actually sleeping this could have a big effect on user well-being.

Our survey also showed that about 60% of office workers think it is important that the office technology they use looks good. This can help to motivate them and help them to feel good about themselves. The new Samsung curved displays certainly will satisfy these people.

What colour is the sky on mars?

mars_originalmars_red

The cameras never lies. Or does it? Recently I had to take a photo for a medical case and before submitting it I had to sign to say that the photo had not been modified. I did this – but it was ridiculous of course. Many people have this idea that the cameras faithfully captures what the scene looks like and that, unless we intentionally manipulate the images (in photoshop, for example), then we have captured the truth. Nothing could be further from the truth – as the recent image of #TheDress showed.

The top photo above was taken and released by NASA in 1976 and shows a Martian landscape. The sky is blue. However, at the time, Carl Sagan said “Despite the impression on these images, the sky is not blue…The sky is in fact pink.”

You see the original image had not been colour corrected. Colour correction is a process that takes place on most cameras these days without the user being aware of it but in 1976 was not automatic. The process can compensate for the spectral sensitivities of the camera sensors (which may differ from one camera to another) or for the colour of the light source. The second picture (above) shows the colour-corrected image. Some people are now arguing, however, that the amount of colour correction applied by NASA is wrong and that the sky should not be as red as it appears on the second photograph. For the full story including some other nice images of Mars see here.

It couldn’t get much blacker

black
A few weeks ago I was taking my son to a birthday party and a journalist from The Independent phoned me to ask my opinion on Vantablack. This is the blackest material ever made. Whereas most black materials reflect about 4% of the light (or more) at all wavelengths, this new nano-material has really really low reflectance. It only reflects about 0.035% of the light. I gave a few comments and an article appeared in The Independent which was nice. I used to really like The Independent, back in the days when I read newspapers. The original article by Ian Johnston was very good imho.

However, a few days later the story was all around the world and I was often cited, all based on that one phone interview with Ian. The thing was that it was not even that big news. That is, yes, it is the blackest material ever made, but the truth is it is an incremental improvement in blackness beating the previous blackest material from a few years ago. My name even appeared in the Daily Mail. Most embarrassingly, I was interviewed on an American radio show. The reason I say it was embarrassing was that this new development actually had nothing to do with me and I didn’t want people thinking I was trying to claim credit. So when I agreed to do the radio show I told the researcher that they needed to be clear that this was nothing to do with me. I didn’t invent it. Imagine my surprise when John Hockenberry (that was his name, I believe) asked me, “So Dr Westland, what have you stumbled upon?”. Arghhhhh!!! Luckily, it was not a live interview because it actually got worse. A lot worse. So bad, that I could barely summon up strength to listen to it when it went out the next day. But actually, the editors did a good job and the final cut is not too bad. You can hear it here.

It would be nice to talk about my own work. I work in the area of blackness. One of the things I do is to ask people to rank different black samples in order of least black to most black. This allows me to discover, for example, that women prefer reddish blacks and men prefer bluish blacks. Also, asians prefer reddish blacks and caucasians prefer bluish blacks. I am developing a blackness index; a way to measure a sample and say how black it is or whether one sample is blacker than another. Why? Well, one application is for manufacturers of black ink for printers (which may be made from coloured inks). Different recipes produce different blacks. What if one recipe is chromatically neutral but another recipe is less neural (it has a slight hue) but is darker – which one is blacker?

grab colour – use it

colour pen

Many of you will have seen the Scribble Pen which uses a colour sensor to detect colours. The sensor is embedded at the end of the pen opposite the nib. The pen then mixes the required coloured ink (cyan, magenta, yellow, white and black) for drawing, using small refillable ink cartridges that fit inside its body. The device can hold 100,000 unique colours in its internal memory and can reproduce over 16 million unique colours.

But wait. Don’t think that means you will be able to use the pen to write in 16 million different colours. You won’t. A typical phone screen can display about 16 million unique combinations of RGB (red, green and blue). But many of the RGB combinations are indistinguishable. Open up powerpoint and make two squares. Set the RGB values of one to [10 220 10] and of the other to [10 220 11]. I would be amazed if you could really tell the difference between them. And anyone who has read much of my blog will know that I believe that if two colours look the same then they are the same. So the pen might be able to create 16 million combinations of cyan, magenta, yellow, white, and black – but that doesn’t mean 16 million different colours.

The second problem is that just because your pen can grab a colour (using its sensor) doesn’t mean it can create it. There are lots of colours out there in the world that are outside the colour gamut of an ink-based system (even one using five primaries – cyan, magenta, yellow, white and black).

Read more: http://www.dailymail.co.uk/sciencetech/article-2647129/Forget-crayons-Multicolour-pen-lets-pick-colour-draw-16-million-shades.html#ixzz35gJ0racJ
Follow us: @MailOnline on Twitter | DailyMail on Facebook

check your urine colour!

urine

Just key urine colour chart into google images and prepare to be amazed. There are so many different charts and blogs and experts. Who would have thought it!! Today I saw an article in The Guardian that inspired to be to make this search. It turns out that there is a new urine colour chart from a clinic in USA that allows you to make a self diagnosis of your health based on the colour of your wee. A case of cross-media colour reproduction if ever I saw one (a poor joke that, for colour imaging scientists who may come across this blog).

I’m not sure it’s news though since there are a plethora of interesting charts for this already in existence and according to The Guardian the philosopher Theophilus noted the medical value in looking at the colour of urine as long ago as 700AD. However, if you have strangely coloured urine you might want to have a quick peek at The Guardian article to put your mind at rest (or not, as the case may be). Mine, for those who are interested, is sometimes clear but sometimes yellow verging on orange which is, I believe, because I don’t drink enough water. If you have blue urine it’s time to worry apparently.

why do we value gold?

gold

Could we have developed currency around elements other than gold and silver? Why couldn’t we have coins made out of platinum, for example?

Interesting article today on the BBC website interviewing Professor Sella (University Collage London) about why, of the 118 elements of the periodic table, it is gold (alongside silver) that we value and use for currency.

According to Prof Sella there are reasons to dismiss all the elements apart from gold and silver. For example, you couldn’t use elements that are gas (such as neon) or liquid (mercury) as currency because it would be impractical to carry them around. Several others (such as arsenic and the other liquid, bromine) are poisonous and so could not be practically used. The alkaline metals (those on the left-hand side of the periodic table) are not stable enough (they react with too many other elements). And, of course, say no more about the radioactive elements. Some of the so-called rare earths (such as cerium) could be used but they tend to be even more rare that gold and are actually quite difficult to distinguish from each other.

periodic-table

Prof Sella also postulates reasons for dismissing the 40 transition and post-transition elements such as copper, lead, iron and aluminium. Many are hard to smelt (needing temperatures as high as 1000 deg C) such as titanium and zirconium or hard to extract such as aluminium. Iron is easier to extract and smelt but rusts too easily. Iron is also too abundant.

Prof Sella lists the 8 noble metals (platinum, palladium, rhodium, iridium, osmium and ruthenium, gold and silver) as contenders. However, with the exception of silver and gold they are too rare and have other problems (platinum is hard to extract and has a very high melting point for example). So this leaves gold and silver. The choice of these metals is not arbitrary. It turns out that they have exactly the right properties that we need. They are stable, chemically uninteresting, rare (but not too rare), safe, relatively easy to extract, solid at room temperature and with a reasonably low melting temperature.

The article also explains why gold is golden in colour.

3D colour printer

3d-printer_0

An article in Stuff reveals what 3D Systems claims to be the world’s first continuous-tone full colour 3D plastic printer, called the ProJet 4500.The ProJet 4500 offers full-colour parts with colours that are able to blend into each other with gradient transitions.

eyes change colour?

reindeer

I didn’t realise how sophisticated reindeers are. It turns out they have two layers of fur to help them keep warm, are able to shrink the pads on their hooves to give then better grip, and can detect ultraviolet light which enables them too see in very dim light. And it also turns out that their eyes can change colour in winter so that their vision is more sensitive. Reindeers, like cats, have a reflective layer behind the retina (which is the inside of the eye ball where all the light-sensitive cells are) that helps them to see in dim light. This is why, if you see a cat at night, you might see the eyes shining; you are seeing light being reflected back at you from the cat’s tapetum lucidum (which is the technical term for the layer behind the retina). The light that shines back in most animals with this layer is golden but in reindeer it apparently shifts to blue in the winter. The shift to blue allows more light to be scattered and improves the vision of the animal.

The full paper can be read in the Proceedings of the Royal Society.

is there such a thing as visible light?

I would argue that there is no such thing as visible light – or at least that the term visible light is a meaningless one.

Light is part of the electromagnetic spectrum which is describes electromagnetic radiation by its wavelength. An electromagnetic wave has both electric and magnetic field components. What is really very interesting is that depending upon the wavelength of the field the electromagnetic radiation has very different properties and we give it a different name.

electromagnetic-spectrum

When the wavelength is very long, the radiation is radio waves or micro waves. When the wavelength is very short, the radiation is x-rays or gamma rays. There is a narrow range of wavelengths (from about 360 nm to about 780 nm – a nm is 0.000000001 of a metre) to which our eyes are sensitive. Because we can literally see this radiation we call it light. I still find it amazing that light, x-rays, radio waves, and microwaves are all essentially the same thing (electromagnetic radiation) with just a change in the wavelength!! However, my point for today is that light is radiation that is visible – to talk about visible light would be bizarre since by its very definition light is visible. Technically, visible light is a pleonasm; pleonasm is a word derived from the Greek word “pleon” meaning excessive. Other examples of pleonasms – easily confused with oxymora – include the phrases end result and invited guests.