Tag Archives: Quantum dots

The future of colour is quantum


Although our digital displays can show literally millions of colours in fact they show us less than half of the possible colours in the world. This is partly because of the reliance on trichromatic devices – what you probably know as RGB. No matter how we choose them, it is impossible to mix together three colours and make all of the other colours. This is despite this embarrassing statement on the BBC website:

Red, yellow and blue are primary colours, which means they can’t be mixed using any other colours. In theory, all other colours can be mixed from these three colours.

This is just plain wrong. It is not the case that in theory, all other colours can be mixed from these three colours. In theory, and in practice, they cannot.

But I digress. The point is that using a three-colour primary system – a trichromatic system – is never going be able to reproduce all of the possible colours in the world. But even if we do use three, we could do better than the current TVs, phones and tablets on the market if we could improve our technology. The problem is that the red, green and blue lights in these displays are not as bright and colourful as they could be. That is where quantum dots come in.

Quantum dots are tiny crystals that can be precisely tuned to efficiently produce very specific colours. The crystals are grown from a mixture of various semiconductor materials and liquid solvents. By carefully controlling the conditions, engineers can adjust the size of the crystals, which determines the wavelength of the light that the crystals emit. Smaller quantum dots, with a diameter of two nanometres (two billionths of a metre) or so, emit short-wavelength, or blue, light. Bigger dots, with diameters closer to eight nanometres, produce light that’s nearer the long-wavelength, or red, end of the spectrum. We can expect to see new technology on the market soon offering brighter and more colourful displays.