Tag Archives: colour

preferred colours

Many studies have been carried out over the last 50-100 years to look at which colours people like and which they don’t like. Although there is variability between individuals (not everyone likes the same colours) there is surprising consistency when the results of lots of different studies are compared. In short people like blues and greens and don’t like yellows and (to a lesser extent) reds. The hue parameter is probably the most important but brightness and colourfulness also affect colour preference. People tend to like brighter and more colourful colours than darker and less colourful ones. Just for fun, I have been running my own survey on this web site. You can still add your two-penneth worth if you like – please go to http://colourware.wordpress.com/2011/02/22/favourite-colour-poll/. Interestingly, my fun survey is also in broad agreement with all those previously published experiments. I found that people’s preferences were:

blue 19%
green 19%
purple 14%
red 11%
orange 8%
yellow 8%
pink 8%
black 4%
grey 4%
white 3%
brown 1%
other 1%

I am not sure what practical application there could be in knowing which colours are more popular. For example, my favourite colour is red but I probably wouldn’t want to buy a red coat. Though on average most people really like blue, this doesn’t mean it would be sensible to make a product blue without consideration of many other factors. In design, colour is almost always in context and that context makes all the difference in the world.

More interesting though is recent research I have read which proposes a reason why there is individual variation in colour preference. According to this idea, we like those colours that remind us of things that we like (we like blue skies and green grass). It could explain dark yellows and oranges are particularly unpopular; these colours are normally associated with some rather unsavoury things (dark orange is the colour of poo and dark yellow the colour of vomit). Further, if people have a strong affiliation with an idea/concept that is strongly associated with a colour, then they may have some preference bias towards that colour. It makes me think – I am a hug fan of Manchester United and red is my favourite colour; but do I like red because I like Manchester United or do I like Manchester United because I like red? I am too old to remember which came first.

colour management for beginners

Colour displays are now affordable and enjoyed by consumers at work, at home, on mobile displays and in cinemas. Consumers often take it for granted that there is good colour fidelity as images are transferred between different devices. So, for example, a red object in an image appears to be approximately the same red when the image is displayed on different computer displays, when it is printed, and when it is viewed on a mobile phone.

This colour fidelity is not easy to achieve. Different devices use very different technology to display colour images. For example, a computer display will mix together light from three primaries (red, green and blue) to generate a range (gamut) of colours. On the other hand, a printer uses completely different technology and typically uses mixtures of cyan, magenta, yellow and black inks to create the gamut of colours. Even computer monitors use a variety of different technologies (from CRT displays, which are becoming obsolete, to LCD, LED, and plasma technologies) each of which may use quite different red, green and blue primaries. Colour management is required to compensate for differences between the technologies (colour primaries, colour mixing, colour gamuts) between different image-display devices. This necessitates that the companies that produce image-display devices must cooperate so that the devices are able to talk to each other; this is achieved through the International Color Consortium (ICC) . The ICC is an industry consortium that was established in 1993 by eight industry vendors (including Microsoft and Apple). Today approximately 70 companies are members of the ICC whose goals are to “create, promote and encourage evolution of an open, vendor-neutral, cross-platform colour management system architecture and components”. The ICC system is implemented in terms of device profiles and colour management system. The device profile is a computer file that is associated with each device (printer, camera, monitor, etc.) that essentially contains information to allow colour to be managed. In the case of a computer monitor, for example, the device profile would include information about the monitor’s primaries that would allow the colour image to be adjusted to compensate for the properties of the monitor so that the colours are displayed correctly. The colour management system is software that manages how these device profiles interact with each other and is normally part of the operating system of the computer.

Thus, when users capture, view, or print images they are using colour management all the time even though they may be unaware of it. Though this level of colour management is built into software and device drivers and is broadly invisible to the user it does enable colour consistency for images when they are captured, viewed and printed throughout the world. However, this level of default colour management is far from perfect. It does not, for example, generally account for changes in settings for a device (for example, a user may change the contrast, brightness, or colour temperature of a display) so that colour fidelity is, in practice, only approximate. This level of colour fidelity is probably sufficient to satisfy about 90% or more of consumers for whom colour is not a critical issue. However, for professionals working in industries where colour is a major concern (e.g. design, retailing) a higher level of colour management is often required. For these users, it is possible to obtain systems (typically low-cost colour-measurement devices and associated software) that allow a user-defined profile to be generated for a particular device with particular settings. This user-defined profile then over-rides the default profile and should enable a better level of colour fidelity to be achieved. Nevertheless, colour fidelity is always likely to be an imperfect issue. It is difficult for colour-management systems to perfectly compensate for the fact that, for example, different devices may generate quite different colour gamuts (typically, the bright red on a computer screen cannot be achieved by a CMYK consumer-level printer).

For ICC see www.color.org

white taxis

In 2009 I blogged about a row in Derby about the yellow colour of taxis. But times change. Things move on, Today I am reading about a problem in Durham – for those who don’t know, Durham is in the north-east of England – about white taxis!! Apparently, this week ten drivers stormed out of a meeting with councillors over a proposal to adopt a policy for all-white colour taxis in the county of Durham. The argument for white taxis is that it would make them stand out and ensure that customers knew which taxis were legitimate. Sounds pretty sensible to me. It would work because white is a very unpopular colour for cars in the UK. I have heard that second-hand car salesmen refer to white as six-week white because it takes 6 weeks longer to sell a white car than other coloured cars. Whereas in other parts of the world, I have noticed in my travels that white cars are quite popular. Perhaps there is a business opportunity here – to export the unpopular white cars to places where they may sell for a premium.

RYB primaries

There are two phrases I keep seeing written down all over the internet that cause my blood pressure to increase.

The first is that the colour primaries are red, yellow and blue (RYB). And the second is that the primaries are colours that cannot be made by mixing other colours. Neither of these statements are true, of course.

The first statement makes no distinction between additive colour mixing (of lights) and subtractive colour mixing (of paints and inks) but subtractive colour mixing is normally implied. However, RYB is a relatively poor choice for three colour primaries. The range of colours that can be produced is actually quite small. For most painters and artists it doesn’t matter because very few work in just three primaries – if they did so they would probably be frustrated by the small gamut of colours achievable. Many artists (painters) will use 10 or more basic colours to mix their palette. However, there is a group of people who care passionately about the gamut of colours that can be obtained by mixing three colour primaries – that is the people who work for companies such as HP and Canon. These companies make CMYK printers for the consumer market and their jobs depend upon consumers liking their printers. They understand that the largest gamut (in subtractive mixing) can be obtained if the primaries are cyan, magenta and yellow (CMY). The teaching of RYB as the (subtractive) primaries should be stopped. It’s already gone on for far too long.

One reason I don’t like the teaching of RYB as being the subtractive primaries, in addition to the fact that it is wrong, is that it confuses people who are trying to learn colour theory. This is because red, yellow and blue seem to be quite pure colours and this encourages people to hold the second belief I don’t like which is that the primaries are pure colours that cannot be mixed from other colours. If people understood that the primaries were CMY it would be less tempting to hold this belief about the purity of the primaries. Of course, if you make a palette of colours of three primaries then it is true that no mixture of two or more colours from that palette can match any of the primaries. However, there are other colours (that are outside the gamut of the primary system) that could be mixed together to match the primaries. This false notion of purity confuses the real issue – that is, that the subtractive primaries are cyan, magenta and yellow because the additive primaries are red, green and blue. Look at this picture below:

The additive primaries are red, green and blue and the secondaries are cyan, magenta and yellow. Correspondingly, the subtractive primaries are cyan, magenta and yellow and the subtractive secondaries are red, green and blue. Simple.

I wrote about this before so for a slightly different perspective see my earlier post.

Perhaps I am so agitated about it today because I am just watching England getting trounced by Ireland at rugby when the Grand Slam was so tantalisingly close. Or maybe I will feel just the same tomorrow.

colour choice

I met a chap from an Advertising Agency today and was surprised when he offered me his business card. He didn’t offer me a single card; he offered me a selection from a fan of cards of different colour.

I chose the purple one and was then surprised when my PhD student told me she has chosen the same colour. A clever experiment in colour preference perhaps? Next time we meet I’ll have to ask him for the data. I hope he is keeping a record of which colour cards are proving most popular.

If you are interested in this you may like to have a look at my colour preference poll. After you take part in the poll (takes only a few seconds) you can see the results of the study so far.

totally colour blind

I was recently writing about colour blindness in the context of design and noted that most colour blind people see colour – it’s just they have poor discrimination and some colours look the same to them whereas to a so-called normal observers they would look different.

People who don’t see colour at all are rare. But I was just reading about one, Neil Harbisson, a classically trained pianist who has been colour blind since birth. He suffers from a condition called Achromatopsia which means he can only see the world in grey. However, he has recently being used a piece of technology that allows him to hear variations in colours. The eyeborg helps translate colours into sound and transforms the colour information picked up by the built-in camera into sound frequencies. For example, when he looks at a red, for example, he hears an F (= 349.23Hz); if he sees a yellow he hears a G. For more information see http://www.techeye.net/science/technology-helps-man-hear-colours.

I wonder what this would feel like. Of course, synesthesia sometimes occurs naturally. That is, some people can hear colours, see sounds, taste numbers etc. I sometimes think that Kandinsky (the artist who worked at the Bauhaus) may have been synesthesic because of his interest in the relationship between colour and shape. Quite possibly, sensing the world in a way that is different to how most people perceive it may me an advantage to an artist.

colour blind designers?

Is colour blindness a problem in design? Colour blind is rare amongst females but is very common amongst males. Approximately 8% of all the men in the world have some form of colour blindness. Colour blindness is a bit of a misnomer of colour; most colour-blind people can see colour but confuse colours that so-called normal observers can easily distinguish between. The most common case is red-green colour blindness and such sufferers find it hard to tell reds and greens apart.

 

But does design take this into account sufficiently? One area where there may be a problem is in the gaming industry. I came across the following comment today where someone is reporting a problem using Call of Duty (a game I don;t play but which I understand is quite popular) on the Xbox. Apparently, the Gamertags of all the players are either green if they are on your team, or red if they are an enemy. Oops!! I wonder how much of a problem this is. The problem is probably greatest when colour is used to convey information (as in this case, friend or enemy) rather just for aesthetics (where the information may be conveyed by contrast alone).

blue appetite suppressant

It is said that blue is an appetite suppressant and that red stimulates appetite. But is this really true? I would be interested if anyone knows of any studies into this.

I have also read that the reason that blue is an appetite suppressant is that blue food is very rare. I think blue food is less frequent than, say, green or red. But there is, of course, blueberries. And I just came across a type of mushroom that is naturally blue. It’s called Lactarius Indigo. I’ve also come across blue food more commonly in other places such as Japan.

The invention of colour

If I was not going to Sweden on Monday – where I have to examine a PhD in colour harmony – it would be nice to attend the lecture I just saw advertised in Bristol by Philip Ball. The lecture will trace the chemical history of the pigments in an artist’s palette. Painters once had to be chemically literate. The lecture is taking place next Tuesday – see http://www.bristol.ac.uk/news/2011/7503.html