From time to time I come across web pages and groups of people who get irrate about indigo being in the rainbow. There is even a facebook group called “Get Indigo out of the rainbow”. It was Newton who suggested that the rainbow contains seven colours: red, orange, yellow, green, blue, indigo and violet. It has been suggested that, at the time, Newton was trying make some anology with the musical scale and the octave (with its seven intervals) and hence was keen to identify seven colours in the rainbow or visible spectrum. Many modern commentators claim that only six distinct colours can be observed in the rainbow.
Interestingly, the facebook group referred to above would like to eject indigo from the spectrum on the basis that it is not a primary or secondary colour but rather a tertiary colour. The group shows the following colour wheel:
In this so-called painters’ wheel the primary colours are red, yellow and blue and the secondary colours are orange, green and violet. It is argued that since six of the colours in the rainbow are primary or secondary colours in the colour wheel and indigo is not, then indigo has no right to be there. This is wrong on so many levels it is hard to know where to start.
The first thing I would have to say is that this argument seems to ignore the difference between additive and subtractive mixing. Additive mixing – http://colourware.wordpress.com/2009/07/13/additive-colour-mixing/ – describes how light is mixed and the additive primaries are red, green and blue. The additive secondaries are cyan, magenta and yellow. Orange is not in sight – and yet surely if we are to make an argument for inclusion in the spectrum based on primaries (and/or secondaries) then it is the additive system that we should be using since the spectrum is emitted light.
The optimal subtractive system primaries are cyan, magenta and yellow (with the secondaries being red, green and blue) though the artists’ colour wheel (which is like the painters’ wheel above) has red, blue and yellow as the primaries.
In my opinion there is nothing special about the colours that we see in the spectrum. Indeed, orange is clearly a mixture of red and yellow and does not seem to me to be a particularly pure colour. I just do not think that arguments to exclude indigo from the spectrum based upon colour wheels or primary colours is valid. That said, I have already mentioned that many people believe that indigo cannot be seen in the spectrum as a separate colour; but this is a phenomenological observation not dogma. I am one of those who believe that indigo and violet cannot be distinguished in the spectrum and therefore I agree with the aims of the facebook group even if I do not agree with their arguments.
The really interesting question is why we see six (or even seven) distinct colour bands in the spectrum when the wavelengths of the spectrum vary smoothly and continuously? I have postulated some possible reasons for this in an earlier post – http://colourware.wordpress.com/2009/07/20/colour-names-affect-consumer-buying/ – but it is far from a complete and convincing explanation. It may explain why we see distinct colours in the rainbow, but why six and why those six in particular. Comments on this would be very very welcome.