Category Archives: knowledge

how colour vision works

yellow

Really super article by Ana Swanson in the Washington Post about colour vision and how it works. As she explains, it is not really correct to think of the long wavelength visible light as being red. It is better, as Newton knew of course, to say that the long-wavelength light has the ability to cause the sensation of redness in us. She gives a nice visual example of how the spectrum looks to a dog, something (by coincidence) that I was only talking about in a lecture last week. As she says:

Is what I see as “blue” really the same thing as what you see as “blue”? Or have we both learned the same name for something that looks different to each of us?

Her article is really worth reading.

There is just one thing I take issue with. It may be ‘nit picking’. But she says “A green leaf, for example, reflects green wavelengths of light and absorbs everything else.”

My image, at the top of this post, shows the reflectance of a typical yellow object. At each wavelength the reflectance is between 0 and 100 per cent. But notice that it is not zero at any wavelength in the range shown (400-700nm). That means that the object reflects light at every wavelength. And it is not 100 at any wavelength meaning that it also absorbs to some extent at every wavelength. It’s just it absorbs more at the shorter wavelengths than at the longer wavelengths and it reflects more at the longer wavelengths than at the shorter ones. But notice one other remarkable thing – the yellow object reflects more light at 700nm (a wavelength we would normally associate with red) than it does at 580nm (a wavelength we might normally associate with yellow).

Yes, the reflected light does look yellow. But, the notion that a “A yellows object reflects yellow wavelengths of light” is misleading. It suggests that the yellow object only reflects, for example, the wavelengths in the spectrum we would normally think of as yellow (around 580nm) and absorbs the rest. This is just not how things are.

On CIE colour-matching functions

In 1931 the CIE used colour-matching experiments by Wright and Guild to recommend the CIE Standard Observer which is a set of colour-matching functions. These are shown below for standard red, green and blue primaries. These show the amounts – known as tristimulus values – of the three primaries (RGB) that on average an observer would use to match one unit of light at each wavelength in the spectrum. Why are these so important? Because they allow the calculation of tristimulus values for any stimulus (that is, any object viewed under any light as long as we know the spectral reflectance factors of the surface and the spectral power of the light).

650px-CIE1931_RGBCMF.svg

I gave a lecture this week about these and so they are fresh on my mind. I wanted to use this blog post to explain two things about the colour-matching functions that may be puzzling you. The first was stimulated after the lecture when one of the students came up to me with a question. You will note that for some of the shorter wavelengths the red tristimulus value is negative. Hopefully you are aware that no matter how carefully we choose the three primaries we cannot match all colours using mixtures of those three in the normal sense. What we have to do is to add one of the primaries to the thing we are trying to match and then match that with an additive mixture of the other two primaries. The question from the student was, wouldn’t that change the colour of the thing that is being matched? The answer is that it would of course. But it’s ok.

We normally represent this matching with an equation:

S ≡ R[R] + G[G] + B[B]

which simply means that the stimulus S is matched by (that is the symbol ≡) R amounts of the R primary, G amounts of the G primary, and B amounts of the B primary. The values R, G and B are the tristimulus values. I put square brackets around the primaries themselves to distinguish them from the amounts or tristimulus values of the primaries being used in the match.

Now when we add one of the primaries to the stimulus (the thing we are matching) itself, we can write this equation:

S + R[R] ≡ G[G] + B[B]

The new colour, S + R[R], can now be matched by an additive mixture of the other two. Hmmmmmm? You may ask. How does that work? Well, we can rearrange this equation to make:

S ≡ -R[R] + G[G] + B[B]

In other words, matching the additive mixture of the original stimulus S and some red with some green and blue, means that – if it were possible – we could match the original stimulus S with the same amount of green and blue and a negative amount of the red. I appreciate that this is mathematical but I hope that it is maths that anyone could understand. It’s not rocket science. Just simple adding and subtracting. This is how we arrive at the colour-matching functions above. No matter what RGB primaries we use one of them will have to be used in negative amounts to match some of the wavelengths. In practice, this is done by adding it to the stimulus as described above. Of course, you may also know that the RGB colour-matching functions were transformed to XYZ colour-matching functions. These are the XYZ values everyone is familiar with. But that is another story I will devote another post to one day.

The second question though, is isn’t this just arbitrary? If we used a different set of RGB primaries wouldn’t we get a different set of colour-matching functions? Again, the answer is yes, but again it doesn’t matter. The whole point about the CIE system was to work out when two different stimuli would match. If two stimuli are matched by using the same amounts of RGB then by definition those two stimuli must themselves match. If we used different RGB primaries the amounts of those tristimulus values would change, of course, but the matching condition would not. Two stimuli that match would also require the same RGB values as each other to match them, not matter what the primaries were (as long as they were fixed of course). So the key achievement of the CIE system was to define when two stimuli would match. However, it was also useful for colour specification or communication but that does indeed depend upon the choice of primaries and requries standardisation.

I hope people find this post useful. Post any questions or comments below.

Extraordinary facts relating to the vision of colours

In 1794 John Dalton presented a lecture to the Manchester Literary and Philosophical Society about colour vision. The first two sentences are shown below:

It has been observed, that our ideas of colours, sounds, tastes, etc. excited by the same object may be very different in themselves, without our being aware of it; and that we may nevertheless converse intelligibly concerning such objects, as if we were certain the impressions made by them on our minds were exactly similar. All, indeed, that is required for this purpose, is, that the same object should uniformly make the same impression on each mind; and that objects that appear different to one should be equally so to others.

It is interesting to reread this sentence again in the light of the recent controversy about the blue and black dress.

Dalton

colour and branding

mcdonalds

According to Jon Feagain colour affects brand development in five ways:

    It helps boost perception

    It attracts attention

    It can help to emphasise or conceal information

    It can help you appeal to the right audience

    It can can help the audience digest information better

I think all of these things are true. However, to make the right decisions a good understanding of colour semiotics is critical in my opinion. Achieving that is easier said than done.

check your urine colour!

urine

Just key urine colour chart into google images and prepare to be amazed. There are so many different charts and blogs and experts. Who would have thought it!! Today I saw an article in The Guardian that inspired to be to make this search. It turns out that there is a new urine colour chart from a clinic in USA that allows you to make a self diagnosis of your health based on the colour of your wee. A case of cross-media colour reproduction if ever I saw one (a poor joke that, for colour imaging scientists who may come across this blog).

I’m not sure it’s news though since there are a plethora of interesting charts for this already in existence and according to The Guardian the philosopher Theophilus noted the medical value in looking at the colour of urine as long ago as 700AD. However, if you have strangely coloured urine you might want to have a quick peek at The Guardian article to put your mind at rest (or not, as the case may be). Mine, for those who are interested, is sometimes clear but sometimes yellow verging on orange which is, I believe, because I don’t drink enough water. If you have blue urine it’s time to worry apparently.

why do we value gold?

gold

Could we have developed currency around elements other than gold and silver? Why couldn’t we have coins made out of platinum, for example?

Interesting article today on the BBC website interviewing Professor Sella (University Collage London) about why, of the 118 elements of the periodic table, it is gold (alongside silver) that we value and use for currency.

According to Prof Sella there are reasons to dismiss all the elements apart from gold and silver. For example, you couldn’t use elements that are gas (such as neon) or liquid (mercury) as currency because it would be impractical to carry them around. Several others (such as arsenic and the other liquid, bromine) are poisonous and so could not be practically used. The alkaline metals (those on the left-hand side of the periodic table) are not stable enough (they react with too many other elements). And, of course, say no more about the radioactive elements. Some of the so-called rare earths (such as cerium) could be used but they tend to be even more rare that gold and are actually quite difficult to distinguish from each other.

periodic-table

Prof Sella also postulates reasons for dismissing the 40 transition and post-transition elements such as copper, lead, iron and aluminium. Many are hard to smelt (needing temperatures as high as 1000 deg C) such as titanium and zirconium or hard to extract such as aluminium. Iron is easier to extract and smelt but rusts too easily. Iron is also too abundant.

Prof Sella lists the 8 noble metals (platinum, palladium, rhodium, iridium, osmium and ruthenium, gold and silver) as contenders. However, with the exception of silver and gold they are too rare and have other problems (platinum is hard to extract and has a very high melting point for example). So this leaves gold and silver. The choice of these metals is not arbitrary. It turns out that they have exactly the right properties that we need. They are stable, chemically uninteresting, rare (but not too rare), safe, relatively easy to extract, solid at room temperature and with a reasonably low melting temperature.

The article also explains why gold is golden in colour.

I like my carrots black

carrot

On Christmas day of 2009 I posted about the colour of carrots.

I had been watching a Royal Institution Christmas Lecture by Prof Sue Hartley about carrots and why they are orange. She spoke about selective breeding by the Dutch (the first naturally occurring carrots were purple – from Afghanistan – and were later cultivated to be orange). In seeking to find more about this I found myself on the website of the British Carrot Museum. It is seriously worth a visit even if your interest in carrots is tangential.

I was reminded of this today when I came across an article in The Economic Times (India) which reported that the Punjab Agriculture University has developed its first black colour carrot variety (known as ‘punjab black beauty’) which has been recommended for general cultivation in the state. The black carrot is the best alternative to tackle the malnutrition problems of the country because it is overloaded with beneficial anti-oxidants and nutrients. The punjab black beauty is is rich in anthocyanins, phenols, flavonols ß-carotene, calcium, iron, and zinc.

I am also reminded, of course, of the words of the great late Uncle Monty (aka Richard Griffiths): “I think the carrot infinitely more fascinating than the geranium. The carrot has mystery. Flowers are essentially tarts. Prostitutes for the bees. There is a certain je ne sais quoi – oh, so very special – about a firm, young carrot”.

MRes Colour Communication

colour communication

We’re starting a new programme at Leeds University next September. It’s MRes Colour Communication. This is a one-year Masters programme by research but with a twist. There is a taught component in the first semester to get everyone up to speed to make sure they understand the basics of colour communication. They then explore one aspect of this in their research project and submit a dissertation at the end of the year. Please contact me at my University email of s.westland@leeds.ac.uk for further information or visit http://www.design.leeds.ac.uk/pg/research-degrees/.

dog vision

I just read an article in The Daily Mail that says that most people think dogs do not have colour vision. The article then goes on to say that Russian scientists have proved that dogs do have colour vision. It seems to me quite accepted that dogs are dichromats – that is they have two types of light-sensitive cells that contribute to colour vision in their eyes. We – humans – are trichromats because we have three such cells. It turns out that the one that is missing – in dogs – is such that dogs’ colour vision is rather like that of a human who has red-green colour blindness. The image below shows how the spectrum looks to a trichromatic human and a dichromatic dog.

dog_vision

As you can see, dogs can bee blues and yellow but have difficulty discriminating between colours in the red-green part of the spectrum. So I am not sure what the fuss is about with the Daily Mail article. After all, everything in the Daily Mail is true!! See http://www.youtube.com/watch?v=5eBT6OSr1TI if you don’t believe me.