Tag Archives: colour mixing

Colour Mixing

I really like this page by John Lovett about colour mixing.

We all know that you can’t mix all colours by starting from three primaries. You can’t do this in theory and you can’t do it in practice. You can’t do it with additive colour mixing and you can’t do it with subtractive mixing. In fact, with subtractive mixing, the oft-cited primaries of red, yellow and blue are actually not a very good choice.

Mixing red and blue pigments, for example, won’t give you a great purple. You will lose saturation and you almost certainly won’t get the vivid purple that is suggested by many colour wheels. However, John Lovett’s page explains how, if you do start with red, yellow and blue, you can do a little better by understanding that there is not just one blue and one red, for example. If you want to mix yellow and blue you should use a greenish yellow and a grreenish blue. On the other hand, if you want to mix blue and red you should use a reddish blue and a bluish red. This reduces the loss in saturation.

However, although Lovett’s advice is superb, you still can’t make all of the colours this way (though you can make all the hues of course). And arguably what Lovett is proposing is a six-primary system rather than a three-primary system. Lovett ends up proposing a six-primary system in an attempt to make the out-dated idea of RYB work.

Why the ‘three colour primaries’ rule is wrong

A great many textbooks state that there are three colour primaries. This is normally followed by the statements:

  1. All colours can be made by mixing together three primaries.
  2. The primaries – which are often cited as being red, yellow and blue – are pure and cannot be created from mixture.

Not only do I profoundly disagree with these last two statements but I disagree with the statement that there are three colour primaries. Here’s why:

It is relatively easy to go into a lab or studio, start with three colours (any three; you pick’em) and find that you cannot make all colours. People who do this will often say, that theoretically you can make all colours from, say, red, yellow and blue but that practically you can’t simply because the primaries are not pure enough. The problem is, the more pure you make the primaries, the fewer colours you can make!! The fact is you cannot make all colours from three primaries no matter how carefully you choose the primaries. You cannot do it practically and you cannot do it theoretically.

We can trace the idea that primaries are ‘pure’ back to ancient Greece. In those times and for centuries afterwards it was even frowned upon to mix colours at all because of the loss of purity.

It turns out that if you want to make a large range of colours using three inks or paints, the primaries you should choose are cyan, magenta and yellow. Don’t just take my word for it. Go and ask HP, Canon or Xerox. These companies have made printers for decades and make a living out of selling devices that allow consumers to make a wide range of colours with just three primary inks. They all use cyan, magenta and yellow as their primaries.

But how can magenta be a primary you might ask? It’s far from pure. That is because the notion of primaries being pure is an outdated idea (outdated for several centuries I might add) and should not be taught in Schools. Cyan, magenta and yellow make good primaries for an ink system precisely because they are not visually pure – they each absorb in a narrow part of the visible spectrum and therefore emit light quite broadly. Blue would make a poor primary in an ink or paint system because it absorbs at too many wavelengths. Mixing together blue and red inks make a very dirty brownish black colour. So the gamut (the technical term for a range of colours produced by some primaries) of colours we can make from red, yellow and blue inks or paints is quite small.

So, we can’t make all colours from three primaries, the best primaries are not those that are pure, and primaries can be made by mixing other colours. It is easy to show that a blue can be made by mixing together cyan and magenta inks and this is shown rather nicely by the artist Scott Naismith in this very nice youtube video.

We tend to use three primaries in many systems because you can make a great many more colours with two primaries than with one and you can make a great many more colours with three primaries than you can with two. But you can’t make all colours with three. You can make more colours (a larger gamut) with four or five primaries – though you still can’t make them all – but we reach the point of diminishing returns. Is it worth the extra expense of having four or five primaries if three do a pretty good job? Usually not. However, sometimes we do think it is worth using more than three primaries. For a start, most printers use CMYK (cyan, magenta, yellow and black) so that is four primaries. Then we have hexachrome printing systems with six primaries. The Quattron TV is manufactured by Sharp and has four primaries (red, green, blue and yellow) whereas most TVs only have three (red, green and blue).

The truth is there is no perfect set of primaries and there is no fixed number. A set of primaries is simply a set of colours in a colour system that can make a useful range of colours (gamut). Very often three hits the commercial soft spot but that’s just about engineering and economics.

For further information list to my podcast about colour

 

Listen here

Or visit my patreon page at https://www.patreon.com/colourchat

why I don’t like the colour wheel

There are many reasons why I don’t like colour wheels of the type shown below:

The first reason is because it perpetuates the myth that the subtractive primaries are red, yellow and blue whereas the fact is that red, yellow and blue produces a rather small gamut of colours. It is certainly not the best choice of subtractive primaries though it is taught as dogma in many art and design schools and throughout children’s education. The problem is that whenever two colours are mixed together there is saturation loss; that is, the resultant mixture ends up being more desaturated than the two components were. The saturation loss is greatest when mixing colours on the opposite side of the colour circle where the resultant mixture can be almost grey. However, for certain choices of primaries, the saturation loss is greater than for others. If red, yellow and blue are used as the primaries then of course it is possible to generate any other hue. However, there is significant saturation loss and the above colour wheel gives completely the wrong impression. It suggests that mixing blue and yellow together, for example, results in a really bright vivid green.

The reality of pigment mixing is much more like the triangular colour wheel shown below:

In the above diagram it can be seen that mixing together yellow and blue results in a really muddy dark green. The purple resulting from mixing blue and red is almost black!! Now it is possible to mix together a blue and a yellow to get a better green. For example, mixing a greenish blue with a yellow will give a much more vivid green. Mixing a bluish red with a greenish blue will result in a lovely purple. We have a name for a greenish blue and a blueish red – we call them cyan and magenta. A much better colour gamut is obtained if we start with the primaries, cyan, magenta and yellow.

Footnote: Some people may look at the triangular colour wheel and think that the reason the colours are dull is that the red, yellow, and blue primaries used are not ‘pure’ enough. Nothing could be farther from the truth. If it was possible to make really vivid and bright red and blue pigments then the resultant colour gamut would be even smaller. Fundamentally, red, yellow and blue just don’t make good subtractive primaries.

RYB primaries

There are two phrases I keep seeing written down all over the internet that cause my blood pressure to increase.

The first is that the colour primaries are red, yellow and blue (RYB). And the second is that the primaries are colours that cannot be made by mixing other colours. Neither of these statements are true, of course.

The first statement makes no distinction between additive colour mixing (of lights) and subtractive colour mixing (of paints and inks) but subtractive colour mixing is normally implied. However, RYB is a relatively poor choice for three colour primaries. The range of colours that can be produced is actually quite small. For most painters and artists it doesn’t matter because very few work in just three primaries – if they did so they would probably be frustrated by the small gamut of colours achievable. Many artists (painters) will use 10 or more basic colours to mix their palette. However, there is a group of people who care passionately about the gamut of colours that can be obtained by mixing three colour primaries – that is the people who work for companies such as HP and Canon. These companies make CMYK printers for the consumer market and their jobs depend upon consumers liking their printers. They understand that the largest gamut (in subtractive mixing) can be obtained if the primaries are cyan, magenta and yellow (CMY). The teaching of RYB as the (subtractive) primaries should be stopped. It’s already gone on for far too long.

One reason I don’t like the teaching of RYB as being the subtractive primaries, in addition to the fact that it is wrong, is that it confuses people who are trying to learn colour theory. This is because red, yellow and blue seem to be quite pure colours and this encourages people to hold the second belief I don’t like which is that the primaries are pure colours that cannot be mixed from other colours. If people understood that the primaries were CMY it would be less tempting to hold this belief about the purity of the primaries. Of course, if you make a palette of colours of three primaries then it is true that no mixture of two or more colours from that palette can match any of the primaries. However, there are other colours (that are outside the gamut of the primary system) that could be mixed together to match the primaries. This false notion of purity confuses the real issue – that is, that the subtractive primaries are cyan, magenta and yellow because the additive primaries are red, green and blue. Look at this picture below:

The additive primaries are red, green and blue and the secondaries are cyan, magenta and yellow. Correspondingly, the subtractive primaries are cyan, magenta and yellow and the subtractive secondaries are red, green and blue. Simple.

I wrote about this before so for a slightly different perspective see my earlier post.

Perhaps I am so agitated about it today because I am just watching England getting trounced by Ireland at rugby when the Grand Slam was so tantalisingly close. Or maybe I will feel just the same tomorrow.